SignalP+TMHMM預測微生物分泌蛋白?廣微測是最權威的檢測中心嗎??健明迪

      SignalP+TMHMM預測微生物分泌蛋白

      Secretory Protein是指在細胞內(nèi)分解后,分泌到細胞外起作用的蛋白質(zhì)。分泌蛋白的N 端有普通由15~30 個氨基酸組成的信號肽。信號肽是引導新分解的蛋白質(zhì)向分泌通路轉移的短(長度5-30個氨基酸)肽鏈。常指新分解多肽鏈中用于指點蛋白質(zhì)的跨膜轉移(定位)的N-末端的氨基酸序列(有時不一定在N端)。運用SignalP 注釋蛋白序列能否含有信號肽結構,運用TMHMM注釋蛋白序列能否含有跨膜結構,*終挑選出含有信號肽結構并且不含跨膜結構的蛋白為分泌蛋白

      軟件Software

      • SignalP V6.0
      • SignalP 6.0 預測來自古細菌、革蘭氏陽性細菌、革蘭氏陰性細菌和真核生物的蛋白質(zhì)中存在的信號肽predicts signal peptides and the location of their cleavage sites in proteins from Archaea, Gram-positive Bacteria,及其切割位點的位置。Gram-negative Bacteria and Eukarya.在細菌和古細菌中,SignalP 6.0 可以區(qū)分五種類型的信號肽:In Bacteria and Archaea, SignalP 6.0 can discriminate between five types of signal peptides:
        • Sec/SPI:由 Sec 轉座轉運,并由信號肽酶 I (Lep) 切割的“規(guī)范”分泌信號肽;"Standard" secretory signal peptides transported by Sec translocon and cleaved by Signal Peptidase I (Lep).
        • Sec/SPII:由 Sec 轉座子運輸,并由信號肽酶 II (Lsp) 切割的脂蛋白信號肽;lipoprotein signal peptides transported by the Sec translocon and cleaved by Signal Peptidase II (Lsp).
        • Tat/SPI:由 Tat 轉座子轉運,并由信號肽酶 I (Lep) 切割的 Tat 信號肽;Tat signal peptides transported by the Tat translocon and cleaved by Signal Peptidase I (Lep).
        • Tat/SPII:由 Tat 轉位子轉運,并由信號肽酶 II (Lsp) 切割的 Tat 脂蛋白信號肽;Tat lipoprotein signal peptides transported by Tat translocon & cleaved by Signal Peptidase II (Lsp).
        • Sec/SPIII:由 Sec 轉位子運輸,并由信號肽酶 III (PilD/PibD) 切割的菌毛蛋白和菌毛蛋白樣信號肽。Pilin & pilin-like signal peptides transported by Sec translocon & cleaved by Signal Peptidase III (PilD/PibD).
        • 此外,SignalP 6.0 預測信號肽的區(qū)域。Additionally, SignalP 6.0 predicts the regions of signal peptides.依據(jù)類型,預測 n、h 和 c 區(qū)域以及其他顯著特征的位置。Depending on the type, the positions of n-, h- and c-regions as well as of other distinctive features are predicted.

      • TMHMM V2.0c
        • 用于預測蛋白質(zhì)中的跨膜螺旋。

      • Python

      SignalP和TMHMM關于學術用戶收費,但是需求填寫相關信息和郵箱,以接納下載鏈接(4h有效時間)。

      軟件裝置Installation of Softwares

      裝置SignalP 6.0

      • 下載 訪問SignalP V6.0網(wǎng)站,找到“Download”,填寫相關信息,獲取下載鏈接,下載失掉“signalp-6.0.fast.tar.gz”。有兩個形式可以選擇——“slow_sequential”和“fast"。前者runs the full model sequentially, taking the same amount of RAM as fast but being 6 times slower;后者uses a smaller model that approximates the performance of the full model, requiring a fraction of the resources and being significantly faste。本教程下載的是fast形式。
      • 裝置Installation
        • 裝置依賴Dependencies
          • Python
          • matplotlib>3.3.2
          • numpy>1.19.2
          • torch>1.7.0 pip install torch
          • tqdm>4.46.1

        • 裝置SignalP 6.0 # 解緊縮裝置文件 tar zxvf signalp-6.0.fast.tar.gz # 進入解壓后的軟件目錄,在終端運轉 python setup.py install # 測試裝置 signalp6 --help

      裝置TMHMM V2.0c

      • 下載 訪問TMHMM V2.0c網(wǎng)站,找到“Download”,填寫相關信息,獲取下載鏈接,下載失掉“tmhmm-2.0c.Linux.tar.gz”。
      • 裝置 # 解緊縮 tar zxvf tmhmm-2.0c.Linux.tar.gz # 進入解壓后的目錄 cd tmhmm-2.0c # 獲取以后途徑,我的是“/home/liu/tools/tmhmm-2.0c/bin” pwd # 將該途徑參與到系統(tǒng)的環(huán)境變量中,參考我之前的文章來(編輯~/.bashrc)liaochenlanruo.github.io # 修正bin目錄下的tmhmm和tmhmmformat.pl的首行為“#!/usr/bin/perl”
      • 運轉錯誤 運轉軟件時總報Segmentation fault (core dumped)錯誤,暫時無解。各位可以運用其在線版

      軟件用法Usage

      SignalP 6.0

      預測Prediction

      A command takes the following form

      signalp6 --fastafile /path/to/input.fasta --organism other --output_dir path/to/be/saved --format txt --mode fast

      • fastafile 輸入文件為FASTA格式的蛋白序列文件Specifies the fasta file with the sequences to be predicted.。
      • organism is either other or Eukarya. Specifying Eukarya triggers post-processing of the SP predictions to prevent spurious results (only predicts type Sec/SPI).
      • format can take the values txt, png, eps, all. It defines what output files are created for individual sequences. txtproduces a tabular .gff file with the per-position predictions for each sequence. png, eps, all additionally produce probability plots in the requested format. For larger prediction jobs, plotting will slow down the processing speed significantly.
      • mode is either fast, slow or slow-sequential. Default is fast, which uses a smaller model that approximates the performance of the full model, requiring a fraction of the resources and being significantly faster. slow runs the full model in parallel, which requires more than 14GB of RAM to be available. slow-sequential runs the full model sequentially, taking the same amount of RAM as fast but being 6 times slower. If the specified model is not installed, SignalP will abort with an error.

      輸入Outputs

      • output_dir/output.gff3:僅包括含有信號肽的序列信息;

      • output_dir/prediction_results.txt:包括了輸入文件中的一切序列(不重要);
      • output_dir/region_output.gff3:包括一切的信號肽區(qū)域信息。
        • n-region: The n-terminal region of the signal peptide. Reported for Sec/SPI, Sec/SPII, Tat/SPI and Tat/SPII. Labeled as N
        • h-region: The center hydrophobic region of the signal peptide. Reported for Sec/SPI, Sec/SPII, Tat/SPI and Tat/SPII. Labeled as H
        • c-region: The c-terminal region of the signal peptide, reported for Sec/SPI and Tat/SPI.
        • Cysteine: The conserved cysteine in +1 of the cleavage site of Lipoproteins that is used for Lipidation. Labeled as c.
        • Twin-arginine motif: The twin-arginine motif at the end of the n-region that is characteristic for Tat signal peptides. Labeled as R.
        • Sec/SPIII: These signal peptides have no known region structure.

      批處置與結果優(yōu)化

      腳本名:run_SignalP.pl

      #!/usr/bin/perl

      use strict;

      use warnings;

      # Author: Liu Hualin

      # Date: Oct 14, 2021

      open IDNOSEQ, ">IDNOSEQ.txt" || die;

      my @faa = glob("*.faa");

      foreach (@faa) {

      $_ =~ /(.+).faa/;

      my $str = $1;

      my $out = $1 . ".nodesc";

      my $sigseq = $1 . ".sigseq";

      my $outdir = $1 . "_signalp";

      open IN, $_ || die;

      open OUT, ">$out" || die;

      while () {

      chomp;

      if (/^(>\S+)/) {

      print OUT $1 . "\n";

      }else {

      print OUT $_ . "\n";

      }

      }

      close IN;

      close OUT;

      my %hash = idseq($out);

      system("signalp6 --fastafile $out --organism other --output_dir $outdir --format txt --mode fast");

      my $gff = $outdir . "/output.gff3";

      if (! -z $gff) {

      open IN, "$gff" || die;

      ;

      open OUT, ">$sigseq" || die;

      while () {

      chomp;

      my @lines = split /\t/;

      if (exists $hash{$lines[0]}) {

      print OUT ">$lines[0]\n$hash{$lines[0]}\n";

      }else {

      print IDNOSEQ $str . "\t" . "$lines[0]\n";

      }

      }

      close IN;

      close OUT;

      }

      system("rm $out");

      system("mv $sigseq $outdir");

      }

      close IDNOSEQ;

      sub idseq {

      my ($fasta) = @_;

      my %hash;

      local $/ = ">";

      open IN, $fasta || die;

      ;

      while () {

      chomp;

      my ($header, $seq) = split (/\n/, $_, 2);

      $header =~ /(\S+)/;

      my $id = $1;

      $hash{$id} = $seq;

      }

      close IN;

      return (%hash);

      }

      將run_SignalP.pl與后綴名為“.faa”的FASTA格式文件放在同一目錄下,在終端中運轉如下代碼:

      perl run_SignalP.pl

      結果解讀Output interpretation

      *代表輸入文件的名字。

      • *_signalp/output.gff3:僅包括含有信號肽的序列信息;
      • *_signalp/prediction_results.txt:包括了輸入文件中的一切序列(不重要);
      • *_signalp/region_output.gff3:包括一切的信號肽區(qū)域信息;
      • *_signalp/*.sigseq:存儲一切信號肽的氨基酸序列文件,可用作TMHMM的輸入文件。

      TMHMM

      預測

      離線版總是報錯,找不出緣由,因此運用網(wǎng)頁效勞器停止,輸入文件為上述生成的“*_signalp/*.sigseq”,將其上傳至網(wǎng)頁版TMHMM,提交義務,等候結果即可。

      結果展現(xiàn)

      TMHMM可以輸入多種格式的結果文件,詳細請參考其官方說明

      在TMHMM網(wǎng)站提交義務

      • Long output format
        • Length: 蛋白序列的長度。The length of the protein sequence.
        • Number of predicted TMHs:預測到的跨膜螺旋的數(shù)量。The number of predicted transmembrane helices.
        • Exp number of AAs in TMHs:跨膜螺旋中氨基酸的預期數(shù)量。The expected number of amino acids intransmembrane helices. 假設此數(shù)字大于 18,則很能夠是跨膜蛋白(或具有信號肽)。If this number is larger than 18 it is very likely to be a transmembrane protein (OR have a signal peptide).
        • Exp number, first 60 AAs:在蛋白的前60個氨基酸中跨膜螺旋中氨基酸的預期數(shù)量。The expected number of amino acids in transmembrane helices in the first 60 amino acids of the protein.假設該數(shù)字超越幾個,你應該被正告在 N 端預測的跨膜螺旋能夠是一個信號肽。If it more than a few, you are warned that a predicted transmembrane helix in the N-term could be a signal peptide.
        • Total prob of N-in:N端在膜的細胞質(zhì)一側的總概率。The total probability that the N-term is on the cytoplasmic side of the membrane.
        • POSSIBLE N-term signal sequence:當“Exp number, first 60 AAs”大于 10 時發(fā)生的正告。A warning that is produced when "Exp number, first 60 AAs" is larger than 10.

      • 蛋白F01_bin.1_00110合計436個氨基酸,有5個跨膜螺旋結構。

      • 蛋白F01_bin.1_00142合計557個氨基酸,一切序列均在膜外,即該序列編碼的是分泌蛋白。

      • Short output format
        • "len=": 蛋白序列的長度。The length of the protein sequence.
        • "ExpAA=":跨膜螺旋中氨基酸的預期數(shù)量。The expected number of amino acids intransmembrane helices.假設此數(shù)字大于 18,則很能夠是跨膜蛋白(或具有信號肽)。If this number is larger than 18 it is very likely to be a transmembrane protein (OR have a signal peptide).
        • "First60=":在蛋白的前60個氨基酸中跨膜螺旋中氨基酸的預期數(shù)量。The expected number of amino acids in transmembrane helices in the first 60 amino acids of the protein.假設該數(shù)字超越幾個,你應該被正告在 N 端預測的跨膜螺旋能夠是一個信號肽。If it more than a few, you are warned that a predicted transmembrane helix in the N-term could be a signal peptide.
        • "PredHel=":預測到的跨膜螺旋的數(shù)量。The number of predicted transmembrane helices by N-best.
        • "Topology=":N-best 預測的拓撲結構。The topology predicted by N-best.拓撲是由跨膜螺旋的位置給出的,假設螺旋在外部,則由“i”分隔,假設螺旋在外部,則由“o”分隔。'i7-29o44-66i87-109o'意味著它從膜內(nèi)末尾,在位置7到29有一個預測的TMH,30-43在膜外,然后是位置44-66的TMH。

      結果匯總

      經(jīng)過網(wǎng)頁版預測我們僅失掉了一個列表文件(Short output format),該文件需求自己復制網(wǎng)頁內(nèi)容粘貼到新文件中,我將其命名為*_TMHMM_SHORT.txt,并將其寄存在*_signalp目錄中,該目錄是由run_SignalP.pl生成的。下面我將會統(tǒng)計各個基因組中信號肽蛋白的總數(shù)量、分泌蛋白數(shù)量和跨膜蛋白數(shù)量到文件Statistics.txt中,并區(qū)分提取每個基因組的分泌蛋白序列到*_signalp/*.secretory.faa文件中,提取跨膜蛋白序列到*_signalp/*.membrane.faa文件中。該進程將經(jīng)過tmhmm_parser.pl完成。

      #!/usr/bin/perl use strict; use warnings; # Author: Liu Hualin # Date: Oct 15, 2021 open OUT, ">Statistics.txt" || die; print OUT "Strain name\tSignal peptide numbers\tSecretory protein numbers\tMembrane protein numbers\n"; my @sig = glob("*_signalp"); foreach my $sig (@sig) { $sig=~/(.+)_signalp/; my $str = $1; my $tmhmm = $sig . "/$str" . "_TMHMM_SHORT.txt"; my $fasta = $sig . "/$str" . ".sigseq"; my $secretory = $str . ".secretory.faa"; my $membrane = $str . ".membrane.faa"; open SEC, ">$secretory" || die; open MEM, ">$membrane" || die; my $out = 0; my $on = 0; my %hash = idseq($fasta); open IN, $tmhmm || die; while () { chomp; $_=~s/[\r\n]+//g; # print $_ . "\n"; my @lines = split /\t/; if ($lines[5] eq "Topology=o") { $out++; print SEC ">$lines[0]\n$hash{$lines[0]}\n"; }else { $on++; print MEM ">$lines[0]\n$hash{$lines[0]}\n"; } } close IN; close SEC; close MEM; system("mv $secretory $membrane $sig"); my $total = $out + $on; print OUT "$str\t$total\t$out\t$on\n"; } close OUT; sub idseq { my ($fasta) = @_; my %hash; local $/ = ">"; open IN, $fasta || die; ; while () { chomp; my ($header, $seq) = split (/\n/, $_, 2); $header =~ /(\S+)/; my $id = $1; $hash{$id} = $seq; } close IN; return (%hash); }

      運轉方法:將tmhmm_parser.pl放在*_signalp的上一級目錄下,*_signalp目錄中必需包括*_TMHMM_SHORT.txt文件和*.sigseq文件。在終端運轉如下代碼:

      perl tmhmm_parser.pl

      腳本獲取

      本文腳本見GitHub

      敬告:運用文中腳本請援用本文網(wǎng)址,請尊重自己的休息效果,謝謝!Notice: When you use the scripts in this article, please cite the link of this webpage. Thank you!

      參考

      原文鏈接:SignalP+TMHMM預測微生物分泌蛋白 | liaochenlanruo

      轉載請注明出處!

      編輯于 2021-12-28 09:33
      「真誠贊賞,手留余香」
      還沒有人贊賞,快來當*個贊賞的人吧!

      SignalP+TMHMM預測微生物分泌蛋白?廣微測是*威望的檢測中心嗎??健明迪

      如何檢測純真水設備能否有細菌繁殖呢

      保證產(chǎn)出水質(zhì)的潔凈是純真水設備消費的關鍵,但是有時分也會出現(xiàn)純真水細菌繁殖的狀況,那么純真水設備如何檢測能否有細菌繁殖呢?罕見的有三種方法:

        一、經(jīng)典微生物培育法:微生物培育法的要素包括:培育基的類型、培育溫度和培育時間。培育方法包括:燒注皿培育法、鋪平皿法、膜過濾法。

        二、儀器法主要有:顯微鏡直接計數(shù)法、放射法、阻抗法以及多種生化方法。

      1、優(yōu)點是精度好,準確度高,可以在較短時間內(nèi)取得檢測結果, 有利于停止及時控制。

      2、缺陷是需人工處置樣品,任務量大,樣品處置量小,易受儀器等其他方面的制約,并且儀器法對微生物是破壞性的,它無法對污染菌作進一步的分別和鑒別。

        三、慣例方法:微生物的鑒別是一項專業(yè)性很強的任務,需少量任務閱歷及專業(yè)知識。

        掌握純真水設備細菌檢測方法,足以可以看出各種不利于設備產(chǎn)水規(guī)范的現(xiàn)象,檢測出危機產(chǎn)水質(zhì)量的污染細菌種類,保證用戶可以及時處置效果,結合純真水設備運轉條件保證系統(tǒng)產(chǎn)水動搖、牢靠。

      發(fā)布于 2022-11-13 15:33?IP 屬地山東
      淺笑傾城:掌管和參與國度、行業(yè)及中央規(guī)范的制修訂50多項。 主要微生物檢測范圍有:食品微生物檢測,化妝品微生物檢測,飼料及寵物食品微生物檢測,威望化妝品微生物檢測,衛(wèi)生用品微生物檢測,飲用水微生物檢測。5 !XHJUXW...

      SignalP+TMHMM預測微生物分泌蛋白?廣微測是*威望的檢測中心嗎??健明迪

      健明迪微生物:例磺胺、抗生素等對生物體外部被微生物感染的組織或病變細胞停止治療,以殺死組織內(nèi)的病原微生物或病變細胞,但對無機體無毒害作用的治療措施。 來源:健明迪轉載于食品微生物檢測群眾號
      SignalP+TMHMM預測微生物分泌蛋白?廣微測是最權威的檢測中心嗎??健明迪
      公司簡介
      健明迪檢測提供的SignalP+TMHMM預測微生物分泌蛋白?廣微測是最權威的檢測中心嗎??健明迪,預測微生物分泌蛋白了塵蘭若了塵蘭若了塵蘭若華中農(nóng)業(yè)大學微生物學博士華中農(nóng)業(yè)大學微生物學博士
      我們的服務
      行業(yè)解決方案
      官方公眾號
      客服微信

      為您推薦
      奶嘴抗拉扯性能測試夾具兒童奶咀抗扯安全性測試?嬰兒奶嘴出口美國需要做哪些檢測認證 ?健明迪

      奶嘴檢測

      微生物菌種檢測?幾招在家輕松自我檢測幽門螺旋桿菌?健明迪

      微生物檢測

      GB38995嬰幼兒奶瓶和奶嘴國家標準檢測項目?66款奶瓶&奶嘴測評:這9款有安全風險,直接列入黑名單!?健明迪

      奶嘴檢測

      宏基因檢測(NGS)在病源微生物檢測中的應用?實驗員分享微生物日常檢驗過程注意事項?健明迪

      微生物檢測